现有一个物理观测量$x$,其平均值为$\overline x$,误差为$\sigma_x$(若$\sigma_x$为统计误差,有$\sigma_x^2=\overline x$)。对于导出量$f(x)$,其误差$\sigma_f$有:$$\sigma_f^2=\left(\frac{\partial f}{\partial x}\right)^2\sigma_x^2。\tag{1}\label{eq1}$$
若存在两个物理观测量$x$和$y$,其平均值和误差分别为:$\overline x\pm\sigma_x$,$\overline y\pm\sigma_y$,则导出量$f(x,y)$的误差$\sigma_f$有:$$\sigma_f^2=\left(\frac{\partial f}{\partial x}\right)^2\sigma_x^2+\left(\frac{\partial f}{\partial y}\right)^2\sigma_y^2+2\frac{\partial f}{\partial x}\frac{\partial f}{\partial y}\sigma_{x,y}。\tag{2}\label{eq2}$$上式中$\sigma_{x,y}$为协方差$(covariance)$:协方差为0,表示$x,y$为独立变量;协方差为$\pm 1$,表示$x,y$线性相关。
外推到多个变量的导出量$f(x_1,x_2,\cdots,x_n)$,其误差$\sigma_f$有:$$\sigma_f^2=\sum_{i=1}^n\left(\frac{\partial f}{\partial x_i}\right)^2\cdot\sigma_{x_i}^2+\sum_{i=1}^n\sum_{i\ne j}^n\left(\frac{\partial f}{\partial x_i}\frac{\partial f}{\partial x_j}\right)\cdot cov(x_i,y_i)。\tag{3}\label{eq3}$$上式中,前一项表示独立变量的标准误差,后一项表示关联变量的误差附加项。
如果$x_1,x_2,\cdots,x_n$均为独立变量,且对应的误差分别为$\sigma_{x1},\sigma_{x2},\cdots,\sigma_{xn}$,则其误差$\sigma_f$为:$$\sigma_f^2=\left(\frac{\partial f}{\partial x_1}\right)^2\sigma_{x_1}^2+\left(\frac{\partial f}{\partial x_2}\right)^2\sigma_{x_2}^2+\cdots+\left(\frac{\partial f}{\partial x_n}\right)^2\sigma_{x_n}^2。\tag{4}\label{eq4}$$
对于同一物理量进行$N$次独立测量,其平均误差$\sigma_{\overline x}$要小于单次测量的误差$\sigma_x$:$$\sigma_{\overline x}=\frac{\sigma_x}{\sqrt N}。\tag{5}\label{eq5}$$
由飞行时间法测中子能量的公式为:$$E_n=\frac{1}{2}m_n\left(\frac{L}{ToF}\right)^2。\tag{6}\label{eq6}$$上式中,$m_n$为中子质量,$L$为中子飞行的距离,$ToF$为中子飞行距离$L$所用的时间,可见三个变量均为独立变量,其误差可由公式4计算得到。
假设中子质量$m_n$的误差为$\sigma_{m_n}$,飞行距离$L$的误差为$\sigma_L$,飞行时间$ToF$的误差为$\sigma_{ToF}$,则中子能量$E_n$的误差$\sigma_{E_n}$为:$$\sigma_{E_n}^2=\left(\frac{\partial E_n}{\partial m_n}\right)^2\cdot\sigma_{m_n}^2+\left(\frac{\partial E_n}{\partial L}\right)^2\cdot\sigma_{L}^2+\left(\frac{\partial E_n}{\partial ToF}\right)^2\cdot\sigma_{ToF}^2。\tag{7}\label{7}$$
$E_n$分别对$m_n$,$L$,$ToF$求偏导有: $$\frac{\partial E_n}{\partial m_n}=\frac{1}{2}\left(\frac{L}{ToF}\right)^2,$$ $$\frac{\partial E_n}{\partial L}=m_n\frac{L}{ToF^2},$$ $$\frac{\partial E_n}{\partial ToF}=-m_n\frac{L^2}{ToF^3}。$$
相对误差$R(E_n)=\frac{\delta E_n}{E_n}$,其中$\delta E_n=\sigma_{E_n}$,有:$$R(E_n)=\sqrt{\frac{1}{{m_n}^2}\sigma_{m_n}^2+\frac{4}{L^2}\sigma_L^2+\frac{4}{ToF^2}\sigma_{ToF}^2}。$$
!jupyter nbconvert errorofEcalculatedbyToF.ipynb --to html